Math 522 Exam 5 Solutions

1. Let $c_{0}=0, c_{1}=1, c_{2}=1, c_{3}=2, c_{4}=5, \ldots$ denote the Catalan numbers. Let $s_{n}=\sum_{i=0}^{n} c_{i}$ denote the sum of the first n Catalan numbers. Find a generating function $S(x)$ for the sequence $\left\{s_{n}\right\}$.

Let $A(x)=\frac{1}{1-x}=\sum_{n \geq 0} 1 x^{n}$. Recall that $C(x)=\frac{1-\sqrt{1-4 x}}{2}$ is the generating function for the Catalan numbers. We now calculate $A(x) C(x)=$ $\sum_{n \geq 0}\left(\sum_{i=0}^{n} c_{i} a_{n-i}\right) x^{n}=\sum_{n \geq 0}\left(\sum_{i=0}^{n} c_{i}\right) x^{n}=\sum_{n \geq 0} s_{n} x^{n}$. Hence the desired generating function is $S(x)=A(x) C(x)=\frac{1-\sqrt{1-4 x}}{2(1-x)}$.
2. Let $A(x)=\frac{5}{(1-2 x)(1+3 x)}$ be the generating function for $\sum_{n \geq 0} a_{n} x^{n}$. Find a closed form for a_{n}.

We begin with partial fractions: $A(x)=\frac{S}{1-2 x}+\frac{T}{1+3 x}=\frac{S(1+3 x)+T(1-2 x)}{(1-2 x)(1+3 x)}$. We get the system $S+T=5,3 S-2 T=0$, with solution $S=2, T=3$. Hence $A(x)=2 \sum_{n \geq 0} 2^{n} x^{n}+3 \sum n \geq 0(-3)^{n} x^{n}=\sum_{n \geq 0}\left(2 \cdot 2^{n}+3(-3)^{n}\right) x^{n}$. Hence $a_{n}=\left(2 \cdot 2^{n}+3(-3)^{n}\right)$, which can be simplified as $a_{n}=2^{n+1}-(-3)^{n+1}$.

